

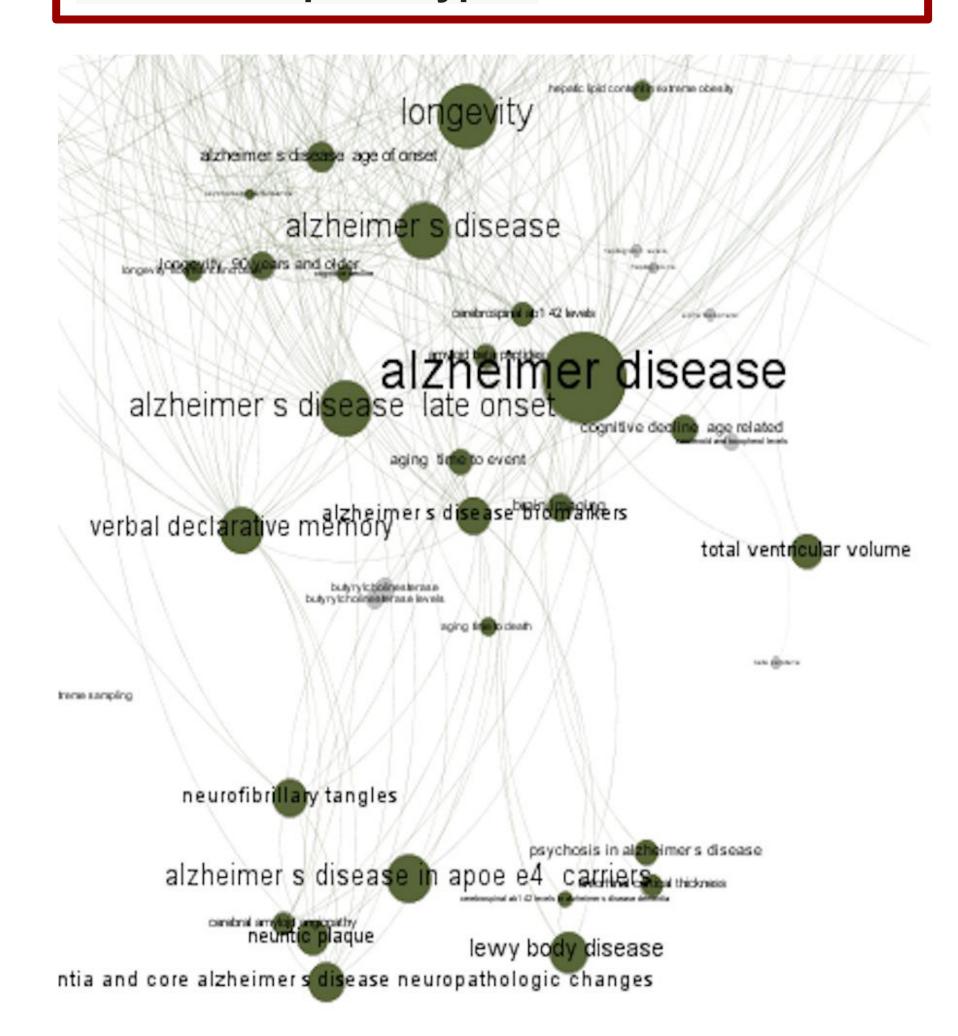
Predicting Epistatic Interactions Using Information and Network Theory

Krishna C. Bathina

bathina@umail.iu.edu, krishnacb.com

Motivation

Since the Human Genome Project, there has been a vested interest in discovering genetic bases for disease phenotypes. Most research methods focus on finding the effects of individual Single Nucleotide Polymorphisms (SNPs) on a phenotype. While producing many positive results, these methods typically do not discover multiple **SNP**, or epistatic, effects on a phenotype. One method from [1,2], uses the *Information Gain* (IG) between SNPs as edge weights within a SNP-SNP interaction network. to find important causal SNPs in binary phenotypes. I extend upon this method to work for continuous phenotypes.



Conclusion

This method provides a simple and quick way to calculate the epistatic interaction that two SNPs could have on a phenotype. Steps to further this work:

- Make a series of toy data sets over reasonable distributions. Compare this method with other well established ones.
- 2. Choose a disease phenotype and apply this method on genomic data from dbGaP. The results can be annotated and submitted for further study.
- **Experiment with new network** methods, such as community detection to find a better set of SNPs and dyadicity and heterophilicity to capture the effect of node properties.

References

- 1. Hu, Ting, et al. "Genome-wide genetic interaction analysis of glaucoma using expert knowledge derived from human phenotype networks." Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing. Vol. 20. NIH Public Access, 2015.
- 2. Hu, Ting, et al. "Characterizing genetic interactions in human disease association studies using statistical epistasis networks." BMC bioinformatics12.1 (2011): 364.
- 3. Ross, Brian C. "Mutual information between discrete and continuous data sets." PloS one 9.2 (2014): e87357.

Methods - Epistatic Detection

- Build a phenotype-phenotype network (figure to the left). Edge weights are the Jaccard index of the common SNPs between any two phenotypes. Phenotypes with more overlapping SNPs have a larger edge weight.
- 2. Choose a phenotype and its first degree neighbors.
- 3. All of the SNPs in the group of phenotypes are used to **build a SNP-SNP network**. Edge weights are proportional to the IG between them.

Information Gain - Given two SNPs, A and B, and phenotype, P, the IG, is the difference of the joint mutual information of (A,B;P) with the mutual information of both (A,P) and (B,P). The calculation is shown in the section below.

$$IG(A, B; \mathcal{P}) =$$

 $I(A, B; \mathcal{P}) - I(A; \mathcal{P}) - I(B; \mathcal{P})$

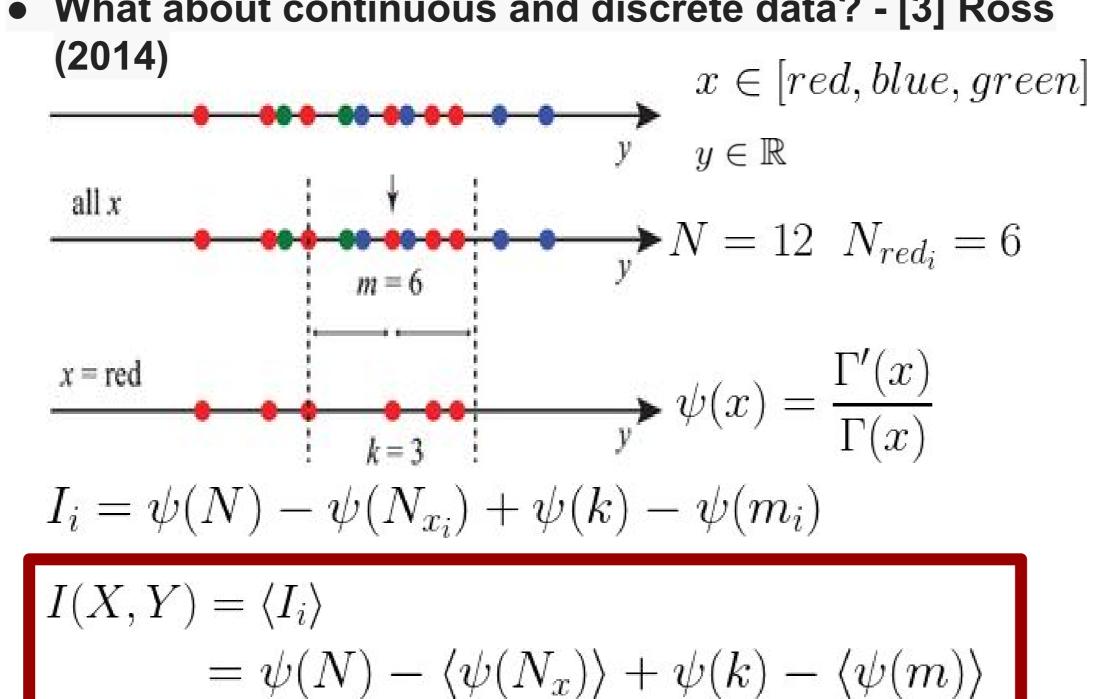
- 4. Permute the original network to form 100 new SNP-SNP networks by randomizing the phenotype class and recalculating the IG.
- 5. For each SNP-SNP network, threshold the edges from IG = 0 to max(IG), in increments of 0.0001, by only including edges with IG ≥ current threshold.
- 6. Calculate network statistics for all of the thresholded networks for each SNP-SNP network
- 7. Run a permutation test to find which threshold leads to the statistically (p < 0.05) largest connected component in the original SNP-SNP network compared to the permuted networks.
- Calculate degree, betweenness, and closeness centrality of the original SNP-SNP network at the statistical threshold to find most important SNPs.
- 9. Annotate SNPs to find existing pathways/functions from past lab and GWAS results.

Methods - Mutual Information

Mutual Information (MI) of X,Y is represented as

$$I(X,Y)_D = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$
$$I(X,Y)_C = \int_x \int_y p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dy dx$$

What about continuous and discrete data? - [3] Ross



Data

- Toy dataset 4000 subjects and 200 SNPs
- Risk variants were assigned according to Hardy-Weinberg equilibrium with MAF < 0.5,
- Phenotype mixed linear model with bilinear term

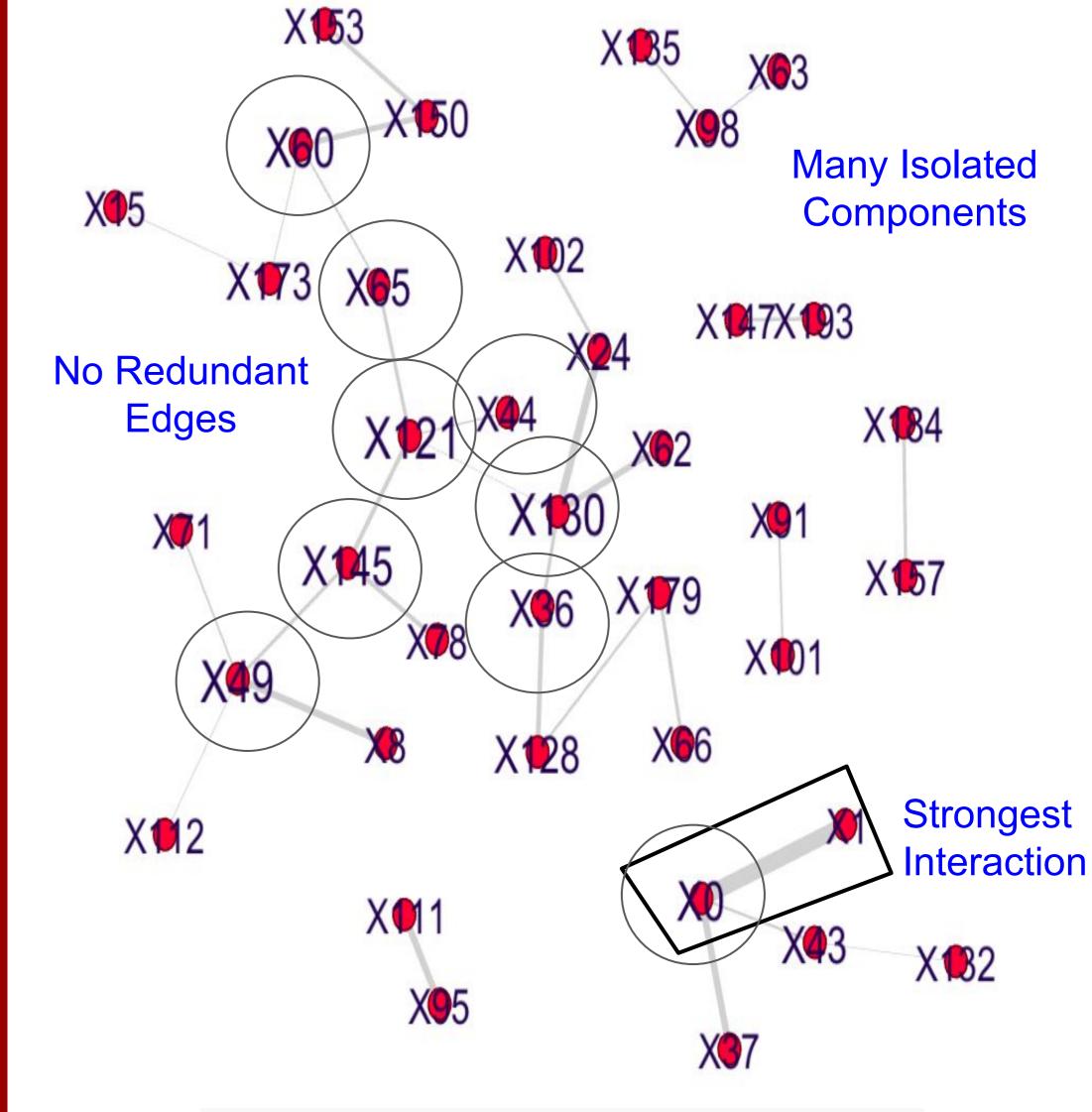
$$P = \beta_0 + \beta_{0,1} X_0 X_1 + \sum_{n=1}^{N} \beta_n X_n + \mathcal{N}(0, 1)$$

- P continuous value representing the phenotype
- β₀ intercept
- β_n effect size of base n
- X_n number of risk variants (AA = 2, Aa = 1, aa = 0) where A is the risk allele and a is the common allele
- $\beta_{a,b}$ effect size of epistatic effect between base a and b
- N(0,1) error term

Results

Parameters::

- $\bullet \ \beta_0 = 1$
- $\beta_1 = 1.5$
- $\beta_{1,2} = 2.2$
- $\beta_3 = N(0,0.5)$ • MAF = U(0,0.5)
- Prop. of interactions with negative IG = **0.538**
- Prop. of interactions with no IG = **0.177**
- Statistically sig. cutoff = 0.0216 (p = 0.05)



Nodes to Investigate

Degree Centrality	Betweenness Centrality	Closeness Centrality
X130	X121	X121
X121	X130	X130
X49	X145	X145
X145	X65	X65
X0	X49	X44
X60	X36	X60