Predicting Epistatic Interactions Using Information and Network Theory for Continuous Phenotypes

Krishna Bathina <u>bathina@umail.iu.edu</u> krishnacb.com

Indiana University School of Informatics, Computing, and Engineering

Predicting <u>Epistatic Interactions</u> Using <u>Information</u> and <u>Network</u> <u>Theory for Continuous Phenotypes</u>

Still working on a better title...

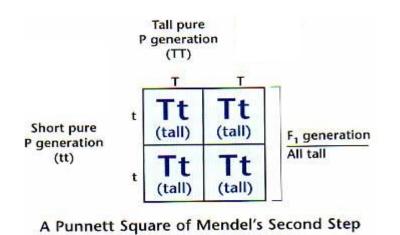
Genetics

Genetics

Motivation Mutual Information Information Gain Finding Epistasis Test Run

Genes & Alleles & Single Nucleotide Polymorphisms (SNPs)

- Gene basic unit of heredity a region of nucleotides in DNA
- Allele variant form of gene



Single Nucleotide \bullet Polymorphisms (SNPs) - variants at a single base that occur in at least 1% of the population Mutation if less than 1% SNP CG A CGTTAGA GCA G CGTTAGA GCA

https://neuroendoimmune.wordpress.com/2014/03/27/dna-rna-snp-alphabet-soup-or-an-introduction-to-genetics/

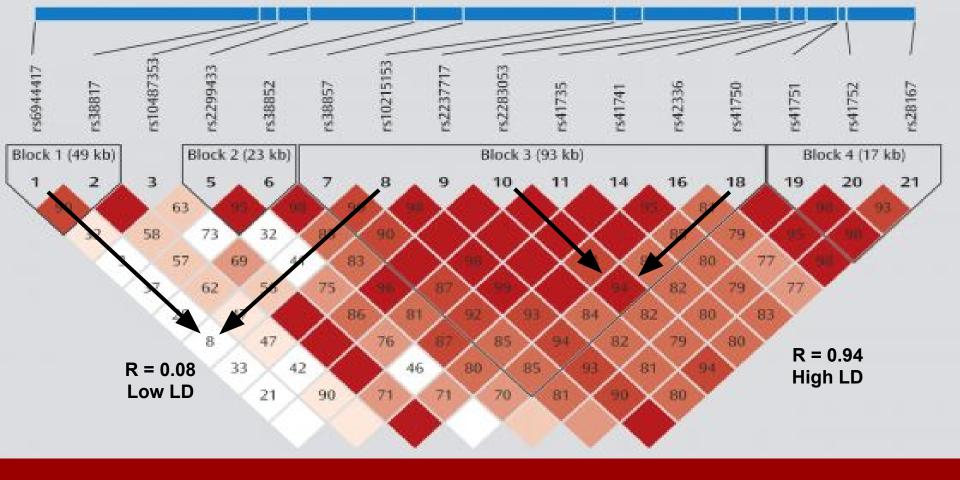
Linkage Disequilibrium (LD)

- LD state of association between different alleles in a population
 - Low LD random association
 - High LD correlated association
- Coefficient of LD
 - Frequency of allele a: pa
 - Frequency of allele b: pb
 - Frequency of ab haplotype: pab

 $D = p_{ab} - p_a p_b$

$$r = \frac{D}{p_a p_b (1 - p_a)(1 - p_b)}$$

https://estrip.org/articles/read/tinypliny/44920/Linkage_Disequilibrium_Blocks_Triangles.html



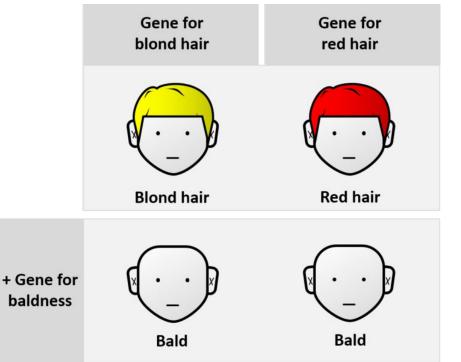
International HapMap Project

Epistasis

The effect of one gene is *modified* by the presence (or lack) of another gene.

- Synergistic effects
- Antagonistic effects

Dominant Epistasis - Baldness is dominant to blond and red hair



http://www.differencebetween.com/difference-between-dominance-and-vs-epistasis/

Motivation

Genetics Motivation Mutual Information Information Gain Finding Epistasis Test Run

- Traditional GWAS only reports significant SNPS based on single interactions
- GWAS too slow to discover joint interactions
- Many complicated proposed statistics
- Similar method proposed by Hu et al, for binary phenotypes -Moore Lab
- Continuous more common than binary phenotypes

Hu, Ting, et al. "Genome-wide genetic interaction analysis of glaucoma using expert knowledge derived from human phenotype networks." *Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing*. Vol. 20. NIH Public Access, 2015.

Mutual Information

Genetics Motivation Mutual Information

Information Gain Finding Epistasis Test Run

Definition

The amount of information learned about one variable from information about the other.

$$Y(X,Y)_D = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

- Random variables: X,Y
- Joint probability function: p(x,y)
- Marginal probability distribution functions: p(x),p(y)

$$I(X,Y)_C = \int_x \int_y p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy$$

 $= D_{KL}(P(X,Y)||P(X)P(Y))$

Example

X	Y
1	1
1	2
2	2
2	3
3	3

$$I(X,Y)_D = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$
$$= p(1,1) * \log \frac{p(1,1)}{p(1)p(1)} + p(1,2) * \log \frac{p(1,2)}{p(1)p(2)} + \dots$$
$$= 0.639$$

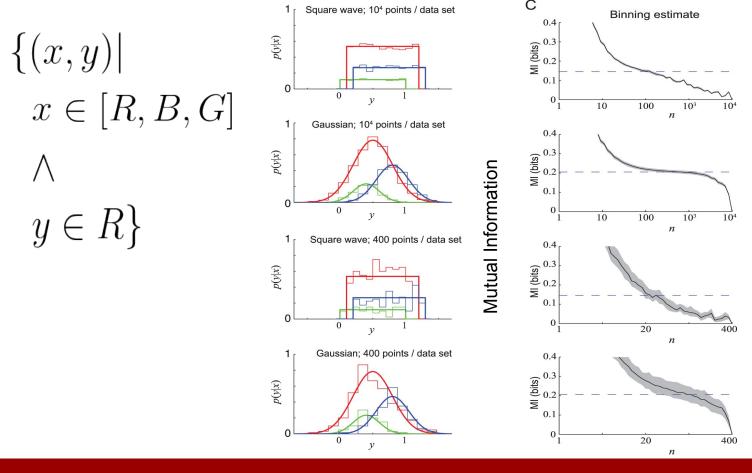
What about Mixed Data? (Ross et al 2014)

- Days of the week and traffic levels
- DNA bases and phenotype expression levels
- Population and City Size

$$I(X,Y) = \langle \log \frac{p(x_i,b_i)}{p(x_i)p(b_i)} \rangle$$

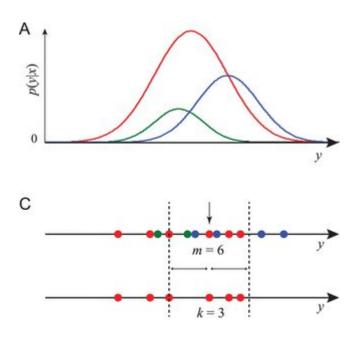
Binning data:

- each bin has N data points
- discrete variable X
- continuous variable Y
- probability of x_i p(x_i)
- fraction of data that falls in the same bin as y_i p(b_i)
- joint probability function p(x_i,b_i).



Estimation using binning relies on bin size - not reliable

K-Nearest Neighbors Method (Ross et al 2014)



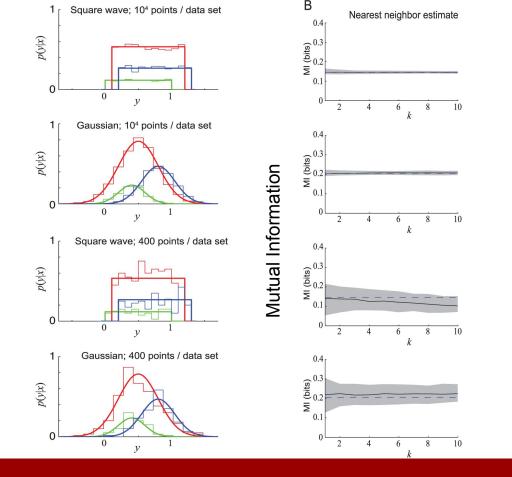
- **N** = number of data points: **12**
- x_i = category of data point i: Red
- N_x = number of data points in the same category as x: 6
- **K** = nearest neighbors: **3**
 - M = total number of data points within the radius of the farthest k-neighbor datum of category x: 6

$$\psi(x) = \frac{d}{dx} \ln(\Gamma(x)) = \frac{\Gamma'(x)}{\Gamma(x)}$$

Information Gain

$$I_i = \psi(N) - \psi(N_{x_i}) + \psi(k) - \psi(m_i)$$

$I(X,Y) = \langle I_i \rangle$ = $\psi(N) - \langle \psi(N_x) \rangle + \psi(k) - \langle \psi(m) \rangle$



Estimation using K-nearest neighbor: more accurate and more precise

Information Gain

Genetics Motivation Mutual Information Information Gain Finding Epistasis Test Run

Information Gain (McGill 1954)

Information Gain(X,Y;Z): a measure of the **combined interaction** between joint variables X and Y with Z

- Amount of synergy in the set (X,Y,Z) beyond the synergy from the subsets of (X,Y,Z)
- The difference between the mutual information of the joint variables X and Y with Z from the individual mutual information

$$IG(X, Y; Z) = I(X, Y, Z) - I(X, Z) - I(Y, Z)$$

Example

Х	Y	Z
1	1	0
2	2	0
2	2	1
2	3	1
1	1	0

$$I(X, Y; Z) - I(X; Z) - I(Y; Z)$$

= 0.395753 - 0.0138443 - 0.395753
= -0.0138443

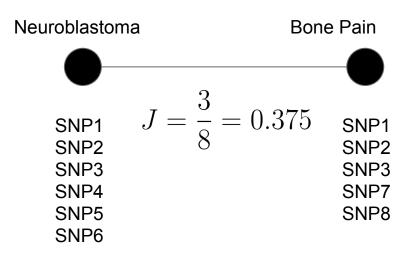
Joint interaction does not give any extra information

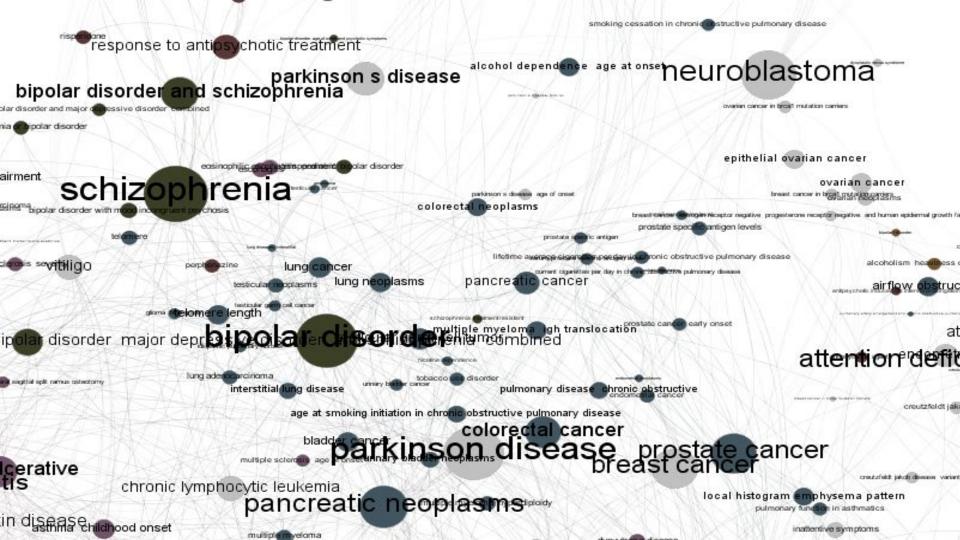
Finding Epistasis

Genetics Motivation Mutual Information Information Gain Finding Epistasis Test Run

1a. Phenotype-Phenotype Network

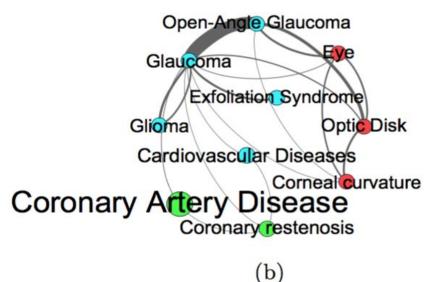
- Dataset of Phenotypes and their statistically significant associated SNPs federally funded studies
 - a. dbGaP Database of Genotypes and Phenotypes
 - b. GWAS Catalog EMBL-EBI
- 2. Phenotypes = Nodes
- 3. Jaccard Index of SNP overlap = edge weights





1b. Choose Subset of Phenotypes

Phenotype	#SNPs	Degree
Exfoliation Syndrome	1	1
Coronary Artery Disease	639	2
Cardiovascular Diseases	70	2
Corneal curvature	13	4
Optic Disk	17	4
Open-Angle Glaucoma	6	5
Glioma	12	2
Eye	13	4
Glaucoma	18	9
Coronary restenosis	56	3

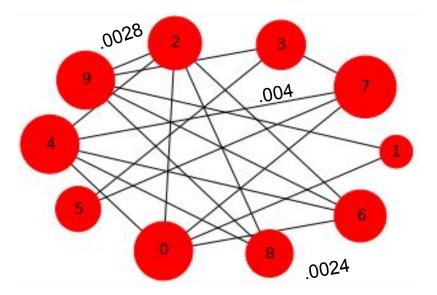


(a)

Hu, Ting, et al. "Genome-wide genetic interaction analysis of glaucoma using expert knowledge derived from human phenotype networks." *Pacific Symposium on Biocomputing. Vol.* 20. NIH Public Access, 2015.

2. SNP-SNP Network

- 1. Build new network with relevant SNPs Include SNPs in high LD
- 2. SNPs = Nodes
- 3. Information Gain = Edge weights
 - The difference between the epistatic effect on the phenotype from the individual effects



 $IG(A, B; \mathcal{P}) = I(A, B; \mathcal{P}) - IG(A; \mathcal{P}) - IG(B; \mathcal{P})$

3. Network Analysis

- 1. **Threshold network edges** from [0,max(IG)] in increments of 0.0001
 - a. Only include edges with IG ≥ threshold
 - b. Find size of largest connected component
- 2. Create 100 new graphs shuffle phenotypes across subjects
 - a. Repeat thresholding process

- 4. **Permutation Test** find threshold for which the connected component is statistically larger in the original graph than the permutation graphs
- 5. Find most **central nodes**

4. SNP Annotation

Annotate discovered SNPs for current pathway information

SNPnexus

Test Run

Genetics Motivation Mutual Information Information Gain Finding Epistasis Test Run

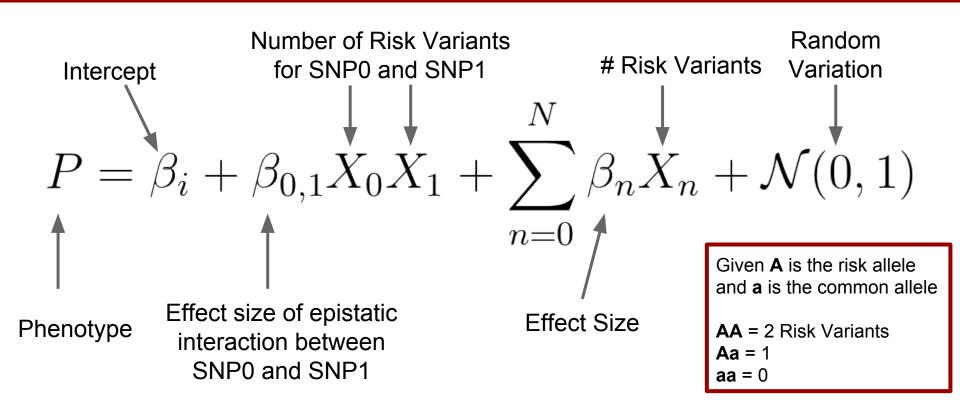
Data

'The investigator must be a tenure-track professor, senior scientist, or equivalent' -dbGaP

Mixed Linear Model:

- 4000 subjects
- 200 total SNPs
- MAF < 0.5 Frequency of second most common allele
 - Uniform, Inversely proportional to frequency, etc.
- Risk variants assigned by HW equilibrium

Mixed Linear Model



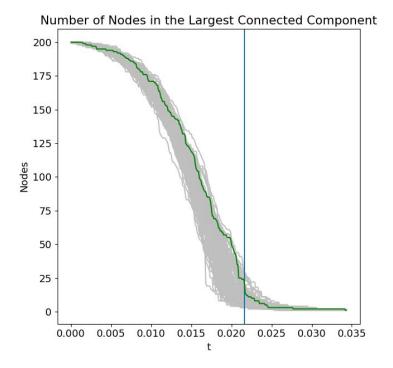
Result – 1 sample run

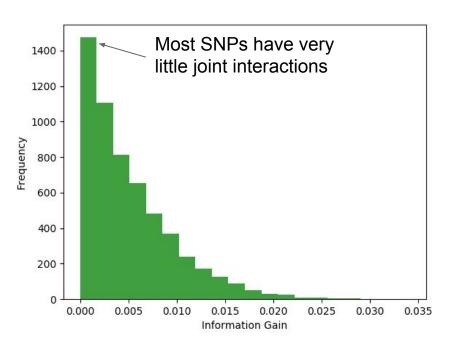
$$P = 1 + 2.2X_0X_1 + 1.5(X_0 + X_1) + \sum_{n=2}^{N} \mathcal{N}(0, 0.5)X_n + \mathcal{N}(0, 1)$$

	X 0	X1	X2	ХЗ	X 4	Ρ
0	0	0	0	0	0	-4.430613
7	0	1	1	0	0	-1.125375
8	1	0	0	0	1	-1.703814
37	1	1	1	0	0	2.626354
116	2	2	1	0	1	7.549712

Interactions with **negative** IG: 53.8% Interactions with **IG = 0**: 17.7% Statistically Significant **cutoff** = 0.0216 (p = 0.05)

Result

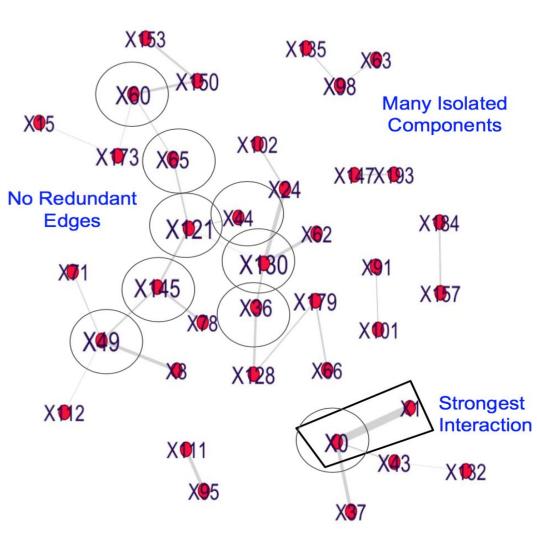




Result

Nodes to Investigate

Degree Centrality	Betweenness Centrality	Closeness Centrality
X130	X121	X121
X121	X130	X130
X49	X145	X145
X145	X65	X65
XO	X49	X44
X60	X36	X60



Future Work

Standard GWAS Method Evaluation

1. Make series of toy datasets over reasonable parameter ranges

- a. Need to check literature for possible values because parameters vary greatly by phenotype
- 2. **Compare method** with current, well established methods find ranges in which new method does well
- 3. Compare computational complexity and speed

Intercept	Distribution of Effect Sizes	Distribution of Risk variants
Effect Size of Epistasis	Number of Epistatic Interactions	Population Size

Future Work cont.

1. Investigate new ways to choose relevant phenotypes

- a. 1° neighbors might be too restrictive.
- b. Looking at **communities** will be more informative for non-obvious phenotype relatedness
- 2. Important Nodes should not be found from trying every possible measure
 - a. Each measure represents a specific kind of important node
- 3. Extend Information Gain to 3,4,5,...n variables many different extensions
- 4. **Different measures** of co-interaction
 - a. Not all measures can find triadic interactions in all distributions (Ryan James)
- 5. **Apply method on individual genomic data** from dbGaP.

Questions?